Welcome to piedomains’s documentation!¶
Contents:
piedomains: Classify website content using ML Models or LLMs¶
🚀 What’s New in v0.6.0¶
Streamlined JSON API: Simple, consistent JSON responses for easy integration with any workflow
Enhanced LLM Support: Built-in support for OpenAI, Anthropic, and Google AI models with custom category definitions
Advanced Archive Analysis: Analyze historical website versions from archive.org with intelligent rate limiting
Separated Data Collection: Collect website content once, run multiple classification approaches (ML + LLM + ensemble)
41 Content Categories: Comprehensive classification including news, shopping, social media, education, finance, and more
Installation¶
pip install piedomains
Requires Python 3.11+
Basic Usage¶
from piedomains import DomainClassifier, DataCollector
classifier = DomainClassifier()
results = classifier.classify(["cnn.com", "amazon.com", "wikipedia.org"])
for result in results:
print(f"{result['domain']}: {result['category']} ({result['confidence']:.3f})")
# Output:
# cnn.com: news (0.876)
# amazon.com: shopping (0.923)
# wikipedia.org: education (0.891)
Classification Methods¶
# Combined text + image analysis (most accurate)
result = classifier.classify(["github.com"])
# Text-only classification (faster)
result = classifier.classify_by_text(["news.google.com"])
# Image-only classification
result = classifier.classify_by_images(["instagram.com"])
# Batch processing with separated workflow
collector = DataCollector()
collection = collector.collect_batch(domains, batch_size=50)
results = classifier.classify_from_collection(collection, method="text")
Historical Analysis¶
# Analyze archived versions from archive.org
old_result = classifier.classify(["facebook.com"], archive_date="20100101")
# Batch processing with archive.org (respects rate limits)
domains = ["google.com", "wikipedia.org", "cnn.com"]
collector = DataCollector(archive_date="20050101")
collection = collector.collect_batch(domains, batch_size=10) # Archive.org uses conservative defaults
historical_results = classifier.classify_from_collection(collection, method="text")
Archive.org Rate Limits & Best Practices¶
The library automatically respects archive.org’s rate limits:
CDX API: 1 request per second for snapshot lookups
Page fetching: Default 2 parallel contexts (vs 4 for live sites)
Auto-retry: Handles HTTP 429 responses with 60-second backoff
Configure archive-specific settings:
from piedomains.fetchers import ArchiveFetcher
# Conservative settings for large batches
fetcher = ArchiveFetcher("20100101", max_parallel=1)
# More aggressive (use carefully)
fetcher = ArchiveFetcher("20100101", max_parallel=3)
LLM Classification¶
# Configure LLM provider
classifier.configure_llm(
provider="openai",
model="gpt-4o",
api_key="sk-...",
categories=["news", "shopping", "social", "tech"]
)
# LLM-powered classification
result = classifier.classify_by_llm(["example.com"])
# With custom instructions
result = classifier.classify_by_llm(
["site.com"],
custom_instructions="Classify by educational value"
)
Set API keys via environment variables:
export OPENAI_API_KEY="sk-..."
export ANTHROPIC_API_KEY="sk-ant-..."
export GOOGLE_API_KEY="..."
Categories¶
41 categories: news, finance, shopping, education, government, adult content, gambling, social networks, search engines, and others based on Shallalist taxonomy.
Security & Docker¶
v0.5.0 includes production-ready Docker containerization for secure domain analysis:
# Build secure sandbox container
docker build -t piedomains-sandbox .
# Run with security constraints (2GB RAM, 2 CPU, read-only filesystem)
docker run --rm --memory=2g --cpus=2 --read-only \
--tmpfs /tmp --tmpfs /var/tmp \
piedomains-sandbox python -c "
from piedomains import DomainClassifier
classifier = DomainClassifier()
result = classifier.classify(['example.com'])
print(result[['domain', 'pred_label']])
"
Batch Processing in Container:
# Use the included secure classification script
cd examples/sandbox
echo -e "wikipedia.org\ngithub.com\ncnn.com" > domains.txt
python3 secure_classify.py --file domains.txt
For testing, use known-safe domains: ["wikipedia.org", "github.com", "cnn.com"]
Documentation¶
Development¶
git clone https://github.com/themains/piedomains
cd piedomains
pip install -e ".[dev]"
pytest tests/ -v
License¶
MIT License
Citation¶
@software{piedomains,
title={piedomains: AI-powered domain content classification},
author={Chintalapati, Rajashekar and Sood, Gaurav},
year={2024},
url={https://github.com/themains/piedomains}
}